Applied Mathematical Sciences : Linear Integral Equations

· Applied Mathematical Sciences Numéro 82 · Springer Science & Business Media
E-book
367
Pages
Les notes et avis ne sont pas vérifiés. En savoir plus

À propos de cet e-book

In the ten years since the first edition of this book appeared, integral equations and integral operators have revealed more of their mathematical beauty and power to me. Therefore, I am pleased to have the opportunity to share some of these new insights with the readers of this book. As in the first edition, the main motivation is to present the fundamental theory of integral equations, some of their main applications, and the basic concepts of their numerical solution in a single volume. This is done from my own perspective of integral equations; I have made no attempt to include all of the recent developments. In addition to making corrections and adjustments throughout the text and updating the references, the following topics have been added: In Sec tion 4.3 the presentation of the Fredholm alternative in dual systems has been slightly simplified and in Section 5.3 the short presentation on the index of operators has been extended. The treatment of boundary value problems in potential theory now includes proofs of the jump relations for single-and double-layer potentials in Section 6.3 and the solution of the Dirichlet problem for the exterior of an arc in two dimensions (Section 7.6). The numerical analysis of the boundary integral equations in Sobolev space settings has been extended for both integral equations of the first kind in Section 13.4 and integral equations of the second kind in Section 12.4.

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.