Applied Mathematical Sciences: Fractional Differential Equations

· Applied Mathematical Sciences Edição nº 206 · Springer Nature
E-book
368
Páginas
As notas e avaliações não são verificadas Saiba mais

Sobre este e-book

This graduate textbook provides a self-contained introduction to modern mathematical theory on fractional differential equations. It addresses both ordinary and partial differential equations with a focus on detailed solution theory, especially regularity theory under realistic assumptions on the problem data. The text includes an extensive bibliography, application-driven modeling, extensive exercises, and graphic illustrations throughout to complement its comprehensive presentation of the field. It is recommended for graduate students and researchers in applied and computational mathematics, particularly applied analysis, numerical analysis and inverse problems.

Sobre o autor

Bangti Jin received the B.Eng. degree in polymeric materials and engineering in 2002, theM.Sc. degree in computational mathematics in 2005, both from Zhejiang University, Hangzhou, China, and the Ph.D. degree in applied mathematics from the Chinese University of Hong Kong, Hong Kong, in 2008. Previously, he was an Assistant Professor of mathematics at the University of California, Riverside (2013–2014), a Visiting Assistant Professor at Texas A&M University (2010–2013), an Alexandre von Humboldt Postdoctoral Researcher at the University of Bremen (2009–2010). He is currently Professor of Inverse Problems at the Department of Computer Science, University College London, London, U.K. His research interests include computational inverse problems and numerical analysis of differential equations.

Avaliar este e-book

Diga o que você achou

Informações de leitura

Smartphones e tablets
Instale o app Google Play Livros para Android e iPad/iPhone. Ele sincroniza automaticamente com sua conta e permite ler on-line ou off-line, o que você preferir.
Laptops e computadores
Você pode ouvir audiolivros comprados no Google Play usando o navegador da Web do seu computador.
eReaders e outros dispositivos
Para ler em dispositivos de e-ink como os e-readers Kobo, é necessário fazer o download e transferir um arquivo para o aparelho. Siga as instruções detalhadas da Central de Ajuda se quiser transferir arquivos para os e-readers compatíveis.