Applied Mathematical Sciences: Fractional Differential Equations

· Applied Mathematical Sciences Utgave nr. 206 · Springer Nature
E-bok
368
Sider
Vurderinger og anmeldelser blir ikke kontrollert  Finn ut mer

Om denne e-boken

This graduate textbook provides a self-contained introduction to modern mathematical theory on fractional differential equations. It addresses both ordinary and partial differential equations with a focus on detailed solution theory, especially regularity theory under realistic assumptions on the problem data. The text includes an extensive bibliography, application-driven modeling, extensive exercises, and graphic illustrations throughout to complement its comprehensive presentation of the field. It is recommended for graduate students and researchers in applied and computational mathematics, particularly applied analysis, numerical analysis and inverse problems.

Om forfatteren

Bangti Jin received the B.Eng. degree in polymeric materials and engineering in 2002, theM.Sc. degree in computational mathematics in 2005, both from Zhejiang University, Hangzhou, China, and the Ph.D. degree in applied mathematics from the Chinese University of Hong Kong, Hong Kong, in 2008. Previously, he was an Assistant Professor of mathematics at the University of California, Riverside (2013–2014), a Visiting Assistant Professor at Texas A&M University (2010–2013), an Alexandre von Humboldt Postdoctoral Researcher at the University of Bremen (2009–2010). He is currently Professor of Inverse Problems at the Department of Computer Science, University College London, London, U.K. His research interests include computational inverse problems and numerical analysis of differential equations.

Vurder denne e-boken

Fortell oss hva du mener.

Hvordan lese innhold

Smarttelefoner og nettbrett
Installer Google Play Bøker-appen for Android og iPad/iPhone. Den synkroniseres automatisk med kontoen din og lar deg lese både med og uten nett – uansett hvor du er.
Datamaskiner
Du kan lytte til lydbøker du har kjøpt på Google Play, i nettleseren på datamaskinen din.
Lesebrett og andre enheter
For å lese på lesebrett som Kobo eReader må du laste ned en fil og overføre den til enheten din. Følg den detaljerte veiledningen i brukerstøtten for å overføre filene til støttede lesebrett.