Applied Mathematical Sciences: Differential Equations and Their Applications

· Applied Mathematical Sciences Edisi #15 · Springer Science & Business Media
eBook
518
Halaman
Rating dan ulasan tidak diverifikasi  Pelajari Lebih Lanjut

Tentang eBook ini

This textbook is a unique blend of the theory of differential equations and their exciting application to "real world" problems. First, and foremost, it is a rigorous study of ordinary differential equations and can be fully un derstood by anyone who has completed one year of calculus. However, in addition to the traditional applications, it also contains many exciting "real life" problems. These applications are completely self contained. First, the problem to be solved is outlined clearly, and one or more differential equa tions are derived as a model for this problem. These equations are then solved, and the results are compared with real world data. The following applications are covered in this text. I. In Section 1.3 we prove that the beautiful painting "Disciples of Emmaus" which was bought by the Rembrandt Society of Belgium for $170,000 was a modem forgery. 2. In Section 1.5 we derive differential equations which govern the population growth of various species, and compare the results predicted by our models with the known values of the populations. 3. In Section 1.6 we derive differential equations which govern the rate at which farmers adopt new innovations. Surprisingly, these same differen tial equations govern the rate at which technological innovations are adopted in such diverse industries as coal, iron and steel, brewing, and railroads.

Beri rating eBook ini

Sampaikan pendapat Anda.

Informasi bacaan

Smartphone dan tablet
Instal aplikasi Google Play Buku untuk Android dan iPad/iPhone. Aplikasi akan disinkronkan secara otomatis dengan akun Anda dan dapat diakses secara online maupun offline di mana saja.
Laptop dan komputer
Anda dapat mendengarkan buku audio yang dibeli di Google Play menggunakan browser web komputer.
eReader dan perangkat lainnya
Untuk membaca di perangkat e-ink seperti Kobo eReaders, Anda perlu mendownload file dan mentransfernya ke perangkat Anda. Ikuti petunjuk Pusat bantuan yang mendetail untuk mentransfer file ke eReaders yang didukung.