Applied Finite Group Actions: Edition 2

· Algorithms and Combinatorics Книга 19 · Springer Science & Business Media
Е-книга
454
Страници
Оцените и рецензиите не се потврдени  Дознајте повеќе

За е-книгава

Also the present second edition of this book is an introduction to the theory of clas sification, enumeration, construction and generation of finite unlabeled structures in mathematics and sciences. Since the publication of the first edition in 1991 the constructive theory of un labeled finite structures has made remarkable progress. For example, the first- designs with moderate parameters were constructed, in Bayreuth, by the end of 1994 ([9]). The crucial steps were - the prescription of a suitable group of automorphisms, i. e. a stabilizer, and the corresponding use of Kramer-Mesner matrices, together with - an implementation of an improved version of the LLL-algorithm that allowed to find 0-1-solutions of a system of linear equations with the Kramer-Mesner matrix as its matrix of coefficients. of matrices of the The Kramer-Mesner matrices can be considered as submatrices form A" (see the chapter on group actions on posets, semigroups and lattices). They are associated with the action of the prescribed group G which is a permutation group on a set X of points induced on the power set of X. Hence the discovery of the first 7-designs with small parameters is due to an application of finite group actions. This method used by A. Betten, R. Laue, A. Wassermann and the present author is described in a section that was added to the manuscript of the first edi tion.

Оценете ја е-книгава

Кажете ни што мислите.

Информации за читање

Паметни телефони и таблети
Инсталирајте ја апликацијата Google Play Books за Android и iPad/iPhone. Автоматски се синхронизира со сметката и ви овозможува да читате онлајн или офлајн каде и да сте.
Лаптопи и компјутери
Може да слушате аудиокниги купени од Google Play со користење на веб-прелистувачот на компјутерот.
Е-читачи и други уреди
За да читате на уреди со е-мастило, како што се е-читачите Kobo, ќе треба да преземете датотека и да ја префрлите на уредот. Следете ги деталните упатства во Центарот за помош за префрлање на датотеките на поддржани е-читачи.