Matroid Theory and its Applications in Electric Network Theory and in Statics

· Algorithms and Combinatorics Book 6 · Springer Science & Business Media
Ebook
533
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

I. The topics of this book The concept of a matroid has been known for more than five decades. Whitney (1935) introduced it as a common generalization of graphs and matrices. In the last two decades, it has become clear how important the concept is, for the following reasons: (1) Combinatorics (or discrete mathematics) was considered by many to be a collection of interesting, sometimes deep, but mostly unrelated ideas. However, like other branches of mathematics, combinatorics also encompasses some gen eral tools that can be learned and then applied, to various problems. Matroid theory is one of these tools. (2) Within combinatorics, the relative importance of algorithms has in creased with the spread of computers. Classical analysis did not even consider problems where "only" a finite number of cases were to be studied. Now such problems are not only considered, but their complexity is often analyzed in con siderable detail. Some questions of this type (for example, the determination of when the so called "greedy" algorithm is optimal) cannot even be answered without matroidal tools.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.