The book begins by exploring the fundamental concepts behind LLMs, including their architectural components, such as transformers and attention mechanisms. It delves into the intricacies of self-attention, positional encoding, and multi-head attention, highlighting how these elements work together to create powerful language models.
In the training section, the book covers essential strategies for pre-training and fine-tuning LLMs, including various paradigms like masked language modeling and next sentence prediction. It also addresses advanced topics such as domain-specific fine-tuning, transfer learning, and continual adaptation, providing practical insights into optimizing model performance for specialized tasks.
Technology and AI Evangelist with 27 years of experience.