Analytic Inequalities

· Grundlehren der mathematischen Wissenschaften Kirja 165 · Springer Science & Business Media
E-kirja
404
sivuja
Arvioita ja arvosteluja ei ole vahvistettu Lue lisää

Tietoa tästä e-kirjasta

The Theory of Inequalities began its development from the time when C. F. GACSS, A. L. CATCHY and P. L. CEBYSEY, to mention only the most important, laid the theoretical foundation for approximative meth ods. Around the end of the 19th and the beginning of the 20th century, numerous inequalities were proyed, some of which became classic, while most remained as isolated and unconnected results. It is almost generally acknowledged that the classic work "Inequali ties" by G. H. HARDY, J. E. LITTLEWOOD and G. POLYA, which appeared in 1934, transformed the field of inequalities from a collection of isolated formulas into a systematic discipline. The modern Theory of Inequalities, as well as the continuing and growing interest in this field, undoubtedly stem from this work. The second English edition of this book, published in 1952, was unchanged except for three appendices, totalling 10 pages, added at the end of the book. Today inequalities playa significant role in all fields of mathematics, and they present a very active and attractive field of research. J. DIEUDONNE, in his book "Calcullnfinitesimal" (Paris 1968), attri buted special significance to inequalities, adopting the method of exposi tion characterized by "majorer, minorer, approcher". Since 1934 a multitude of papers devoted to inequalities have been published: in some of them new inequalities were discovered, in others classical inequalities ,vere sharpened or extended, various inequalities ,vere linked by finding their common source, while some other papers gave a large number of miscellaneous applications.

Arvioi tämä e-kirja

Kerro meille mielipiteesi.

Tietoa lukemisesta

Älypuhelimet ja tabletit
Asenna Google Play Kirjat ‑sovellus Androidille tai iPadille/iPhonelle. Se synkronoituu automaattisesti tilisi kanssa, jolloin voit lukea online- tai offline-tilassa missä tahansa oletkin.
Kannettavat ja pöytätietokoneet
Voit kuunnella Google Playsta ostettuja äänikirjoja tietokoneesi selaimella.
Lukulaitteet ja muut laitteet
Jos haluat lukea kirjoja sähköisellä lukulaitteella, esim. Kobo-lukulaitteella, sinun täytyy ladata tiedosto ja siirtää se laitteellesi. Siirrä tiedostoja tuettuihin lukulaitteisiin seuraamalla ohjekeskuksen ohjeita.