Analysis of Stochastic Partial Differential Equations

· CBMS Regional Conference Series in Mathematics Livre 119 · American Mathematical Soc.
E-book
116
Pages
Les notes et avis ne sont pas vérifiés. En savoir plus

À propos de cet e-book

The general area of stochastic PDEs is
interesting to mathematicians because it contains an enormous number of
challenging open problems. There is also a great deal of interest in
this topic because it has deep applications in disciplines that range
from applied mathematics, statistical mechanics, and theoretical
physics, to theoretical neuroscience, theory of complex chemical
reactions [including polymer science], fluid dynamics, and mathematical
finance.

The stochastic PDEs that are studied in this book are
similar to the familiar PDE for heat in a thin rod, but with the
additional restriction that the external forcing density is a
two-parameter stochastic process, or what is more commonly the case,
the forcing is a "random noise," also known as a "generalized random
field." At several points in the lectures, there are examples that
highlight the phenomenon that stochastic PDEs are not a subset of PDEs.
In fact, the introduction of noise in some partial differential
equations can bring about not a small perturbation, but truly
fundamental changes to the system that the underlying PDE is attempting
to describe.

The topics covered include a brief introduction to
the stochastic heat equation, structure theory for the linear
stochastic heat equation, and an in-depth look at intermittency
properties of the solution to semilinear stochastic heat equations.
Specific topics include stochastic integrals à la Norbert Wiener, an
infinite-dimensional Itô-type stochastic integral, an example of a
parabolic Anderson model, and intermittency fronts.

There are
many possible approaches to stochastic PDEs. The selection of topics
and techniques presented here are informed by the guiding example of
the stochastic heat equation.

A co-publication of the AMS and CBMS.

À propos de l'auteur

Nothing provided

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.