An Introduction to Lorentz Surfaces

· De Gruyter Expositions in Mathematics Cartea 22 · Walter de Gruyter
4,0
2 recenzii
Carte electronică
226
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics.

The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic.

Editorial Board

Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil
Walter D. Neumann, Columbia University, New York, USA
Markus J. Pflaum, University of Colorado, Boulder, USA
Dierk Schleicher, Jacobs University, Bremen, Germany
Katrin Wendland, University of Freiburg, Germany

Honorary Editor

Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia

Titles in planning include

Yuri A. Bahturin, Identical Relations in Lie Algebras (2019)
Yakov G. Berkovich and Z. Janko, Groups of Prime Power Order, Volume 6 (2019)
Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019)
Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019)
Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021)
Ioannis Diamantis, Boštjan Gabrovšek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)

Evaluări și recenzii

4,0
2 recenzii

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.