An Introduction to Functional Analysis

· Cambridge University Press
Е-књига
422
Страница
Оцене и рецензије нису верификоване  Сазнајте више

О овој е-књизи

This accessible text covers key results in functional analysis that are essential for further study in the calculus of variations, analysis, dynamical systems, and the theory of partial differential equations. The treatment of Hilbert spaces covers the topics required to prove the Hilbert–Schmidt theorem, including orthonormal bases, the Riesz representation theorem, and the basics of spectral theory. The material on Banach spaces and their duals includes the Hahn–Banach theorem, the Krein–Milman theorem, and results based on the Baire category theorem, before culminating in a proof of sequential weak compactness in reflexive spaces. Arguments are presented in detail, and more than 200 fully-worked exercises are included to provide practice applying techniques and ideas beyond the major theorems. Familiarity with the basic theory of vector spaces and point-set topology is assumed, but knowledge of measure theory is not required, making this book ideal for upper undergraduate-level and beginning graduate-level courses.

О аутору

James C. Robinson is a professor in the Mathematics Institute at the University of Warwick. He has been the recipient of a Royal Society University Research Fellowship and an Engineering and Physical Sciences Research Council (EPSRC) Leadership Fellowship. He has written six books in addition to his many publications in infinite-dimensional dynamical systems, dimension theory, and partial differential equations.

Оцените ову е-књигу

Јавите нам своје мишљење.

Информације о читању

Паметни телефони и таблети
Инсталирајте апликацију Google Play књиге за Android и iPad/iPhone. Аутоматски се синхронизује са налогом и омогућава вам да читате онлајн и офлајн где год да се налазите.
Лаптопови и рачунари
Можете да слушате аудио-књиге купљене на Google Play-у помоћу веб-прегледача на рачунару.
Е-читачи и други уређаји
Да бисте читали на уређајима које користе е-мастило, као што су Kobo е-читачи, треба да преузмете фајл и пренесете га на уређај. Пратите детаљна упутства из центра за помоћ да бисте пренели фајлове у подржане е-читаче.