Following this book's clear explanations, examples, and illustrations, domain experts can design and deploy nontrivial networked sensing applications without much knowledge of the low-level networking aspects of deployment. This new approach is based on the Abstract Task Graph (ATaG), a data-driven programming model and an innovative methodology forarchitecture-independent programming and automatic software synthesis for sensor networks. ATaG programs are concise, understandable, and network-independent descriptions of global application functionality that can be automatically compiled onto any target deployment.
The book begins with an overview chapter that addresses the important issues of programming methodologies and compares various programming models for sensor networks. Next, the authors set forth everything you need for designing and deploying sensor networks using ATaG, including:
Detailed description of the ATaG model's features
System-level support for architecture-independent programming
Examination of the graphical programming and software synthesis environment for ATaG
Case study illustrating the process of end-to-end application development and software synthesis using ATaG
Throughout the book, the authors provide code excerpts and figures to help clarify key concepts and explain each step.
For programmers, the graphical formalism of the ATaG program, coupled with the fact it uses an existing language (Java), means that no special training is needed to start developing and deploying applications in ATaG. Everything you need to know is clearly set forth in this book.
Amol B. Bakshi, PhD, is a Research Assistant Professor in the Ming Hsieh Department of Electrical Engineering at the University of Southern California (USC), Los Angeles. He also manages the Integrated Asset Management project at the USC-Chevron Center of Excellence for Research and Academic Training on Interactive Smart Oilfield Technologies. Dr. Bakshi's PhD research was on programming models for networked sensor systems and led to the creation of the ATaG programming model and software synthesis toolkit. His current interests include semantic Web technologies for information integration, smart oilfield technologies, model integrated computing, and sensor networks.
Viktor K. Prasanna, PhD, is Charles Lee Powell Chair in Engineering and Professor of Electrical Engineering and Professor of Computer Science at the University of Southern California (USC), Los Angeles. He is also an associate member of the Center for Applied Mathematical Sciences (CAMS) at USC, and a member of the USC-Chevron Center of Excellence for Research and Academic Training on Interactive Smart Oilfield Technologies. He has served on the editorial boards of the Journal of Parallel and Distributed Computing, Proceedings of the IEEE, IEEE Transactions on VLSI Systems, and IEEE Transactions on Parallel and Distributed Systems. He was editor-in-chief of the IEEE Transactions on Computers and was the founding chair of the IEEE Computer Society Technical Committee on Parallel Processing. He is a Fellow of the IEEE and the ACM.