Cartilage Tissue and Knee Joint Biomechanics: Fundamentals, Characterization and Modelling

· · ·
· Elsevier
Ebook
1100
Pages
Eligible
Ratings and reviews aren’t verified  Learn More

About this ebook

Cartilage, Tissue and Knee Joint Biomechanics: Fundamentals, Characterization and Modelling is a cutting-edge multidisciplinary book specifically focused on modeling, characterization and related clinical aspects. The book takes a comprehensive approach towards mechanics, fundamentals, morphology and properties of Cartilage Tissue and Knee Joints. Leading researchers from health science, medical technologists, engineers, academics, government, and private research institutions across the globe have contributed to this book. This book is a very valuable resource for graduates and postgraduates, engineers and research scholars. The content also includes comprehensive real-world applications. As a reference for the total knee arthroplasty, this book focuses deeply on existing related theories (including: histology, design, manufacturing and clinical aspects) to assist readers in solving fundamental and applied problems in biomechanical and biomaterials characterization, modeling and simulation of human cartilages and cells. For biomedical engineers dealing with implants and biomaterials for knee joint injuries, this book will guide you in learning the knee anatomy, range of motion, surgical procedures, physiological loading and boundary conditions, biomechanics of connective soft tissues, type of injuries, and more. - Provides a comprehensive resource on the knee joint and its connective soft tissues; content included spans biomechanics, biomaterials, biology, anatomy, imaging and surgical procedure - Covers ISO and FDA based regulatory control and compliance in the manufacturing process - Includes discussions on the relationship between knee anatomical parameters and knee biomechanics

About the author

Amirsadegh Rezazadeh Nochehdehi is currently an academic staff member at the University of South Africa (UNISA). He is also a PhD fellow at the Biomechanics Research Group, Department of Mechanical and Industrial Engineering (DMIE), University of South Africa (UNISA), Johannesburg, South Africa. He graduated from Materials and Biomaterials Research Center, Iran (MSc) with a degree in Biomedical Engineering – Division of Biomaterials in 2017. He also graduated from Karaj Branch of Islamic Azad University, Iran (BSc) with a degree in Materials and Metallurgy Engineering – division of Industrial Metallurgy in 2012. As a research scholar, he has worked in polymer nanocomposites for tissue regeneration applications at International and Inter-University Center for Nano-science and Nano-technology (IIUCNN) in Mahatma Gandhi University (MGU),Kerala, India, in 2018. He also worked in magneto-metallic alloy nanoparticles at Nanotechnology Research Center at University of Zululand, South Africa as visiting research in 2017. In addition, he was a quality and safety engineer inspector while worked at Tehran Urban and Suburban Railway Operation Company (TUSROC) for a period of 5 years. His scientific research is in Metallurgy and Materials Design, Advanced Materials, Hydrogen Storage Materials, Nano-science and Nano-technology, Nanomedicine, Nanomaterials, Nanocomposites, Magnetic Nanoparticles, Magnetic Nano-Alloys, Magnetic Hyperthermia, Biomedical Science and Engineering, bio-materials, Biomechanics, Mechanics of Tissue, and Regenerative Medicine.

Prof. Fulufhelo Nemavhola is a distinguished scholar renowned for his extensive expertise in biomechanics, computational mechanics, and medical device design. He has authored and co-authored over 80 accredited journal and conference papers. Prof. Nemavhola's research interests encompass soft tissue mechanics, medical device design, and the development of wearable sensor technologies for healthcare and sports applications. In addition to his academic achievements, he holds significant executive management experience within higher education institutions and currently leads research, innovation, and third-stream income efforts at DUT. He is dedicated to advancing research and technology solutions contributing to societal development, particularly in under-resourced environments.

Sabu Thomas is a Professor and Director of the International and Interuniversity Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, India. He is internationally recognized for his contributions to polymer science and engineering, with his research interests encompassing polymer nanocomposites, elastomers, polymer blends, interpenetrating polymer networks, polymer membranes, green composites, nanocomposites, nanomedicine, and green nanotechnology. His groundbreaking inventions in polymer nanocomposites, polymer blends, green bionanotechnology, and nano-biomedical sciences have significantly advanced the development of new materials for the automotive, space, housing, and biomedical fields.

She completed her Ph.D. in 2015. Following her Ph.D., she conducted postdoctoral research at the Centre for Advanced Materials, Qatar University, Doha-Qatar, under Prof. Mariam Ali S A Al-Maadeed, where she worked on improving the adhesion between fibers and LDPE via plasma modification. She also pursued postdoctoral research with Prof. Koichi Goda in the Department of Mechanical Engineering, Yamaguchi University, Japan, in collaboration with TOCLAS Corporation, Japan. She was awarded the Dr. D. S. Kothari Postdoctoral Fellowship (DSKPDF) to work with Prof. Sabu Thomas at Mahatma Gandhi University.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.