All Compact Orientable Three Dimensional Manifolds Admit Total Foliations

· American Mathematical Society: Memoirs of the American Mathematical Society Buku 233 · American Mathematical Soc.
eBook
74
Halaman
Rating dan ulasan tidak diverifikasi  Pelajari Lebih Lanjut

Tentang eBook ini

A total foliation is an example of a geometric structure on a manifold. A total foliation of an [script]n dimensional manifold consists of a [script]n codimension one foliations that are transverse at every point. If a manifold admits a total foliation where all [script]n foliations are transverse oriented, it is said to be totally parallelizable. A necessary condition for total parallelizability is that the manifold be parallelizable. Whether or not this is also a sufficient condition is not known. In this memoir, the author proves a theorem: All compact orientable three dimensional manifolds admit total foliations. This theorem is proven by explicitly constructing total foliations for all compact orientable three manifolds

Beri rating eBook ini

Sampaikan pendapat Anda.

Informasi bacaan

Smartphone dan tablet
Instal aplikasi Google Play Buku untuk Android dan iPad/iPhone. Aplikasi akan disinkronkan secara otomatis dengan akun Anda dan dapat diakses secara online maupun offline di mana saja.
Laptop dan komputer
Anda dapat mendengarkan buku audio yang dibeli di Google Play menggunakan browser web komputer.
eReader dan perangkat lainnya
Untuk membaca di perangkat e-ink seperti Kobo eReaders, Anda perlu mendownload file dan mentransfernya ke perangkat Anda. Ikuti petunjuk Pusat bantuan yang mendetail untuk mentransfer file ke eReaders yang didukung.