All Compact Orientable Three Dimensional Manifolds Admit Total Foliations
Detlef Hardorp
sij 1980. · American Mathematical Society: Memoirs of the American Mathematical SocietyKnjiga 233 · American Mathematical Soc.
E-knjiga
74
str.
Odlomak
reportOcjene i recenzije nisu potvrđene Saznajte više
O ovoj e-knjizi
A total foliation is an example of a geometric structure on a manifold. A total foliation of an [script]n dimensional manifold consists of a [script]n codimension one foliations that are transverse at every point. If a manifold admits a total foliation where all [script]n foliations are transverse oriented, it is said to be totally parallelizable. A necessary condition for total parallelizability is that the manifold be parallelizable. Whether or not this is also a sufficient condition is not known. In this memoir, the author proves a theorem: All compact orientable three dimensional manifolds admit total foliations. This theorem is proven by explicitly constructing total foliations for all compact orientable three manifolds
Audioknjige kupljene na Google Playu možete slušati pomoću web-preglednika na računalu.
Elektronički čitači i ostali uređaji
Za čitanje na uređajima s elektroničkom tintom, kao što su Kobo e-čitači, trebate preuzeti datoteku i prenijeti je na svoj uređaj. Slijedite detaljne upute u centru za pomoć za prijenos datoteka na podržane e-čitače.