Algebraic Number Theory

· Graduate Texts in Mathematics Kitabu cha 110 · Springer Science & Business Media
Kitabu pepe
354
Kurasa
Ukadiriaji na maoni hayajahakikishwa  Pata Maelezo Zaidi

Kuhusu kitabu pepe hiki

The present book gives an exposition of the classical basic algebraic and analytic number theory and supersedes my Algebraic Numbers, including much more material, e. g. the class field theory on which I make further comments at the appropriate place later. For different points of view, the reader is encouraged to read the collec tion of papers from the Brighton Symposium (edited by Cassels-Frohlich), the Artin-Tate notes on class field theory, Weil's book on Basic Number Theory, Borevich-Shafarevich's Number Theory, and also older books like those of Weber, Hasse, Hecke, and Hilbert's Zahlbericht. It seems that over the years, everything that has been done has proved useful, theo retically or as examples, for the further development of the theory. Old, and seemingly isolated special cases have continuously acquired renewed significance, often after half a century or more. The point of view taken here is principally global, and we deal with local fields only incidentally. For a more complete treatment of these, cf. Serre's book Corps Locaux. There is much to be said for a direct global approach to number fields. Stylistically, I have intermingled the ideal and idelic approaches without prejudice for either. I also include two proofs of the functional equation for the zeta function, to acquaint the reader with different techniques (in some sense equivalent, but in another sense, suggestive of very different moods).

Kadiria kitabu pepe hiki

Tupe maoni yako.

Kusoma maelezo

Simu mahiri na kompyuta vibao
Sakinisha programu ya Vitabu vya Google Play kwa ajili ya Android na iPad au iPhone. Itasawazishwa kiotomatiki kwenye akaunti yako na kukuruhusu usome vitabu mtandaoni au nje ya mtandao popote ulipo.
Kompyuta za kupakata na kompyuta
Unaweza kusikiliza vitabu vilivyonunuliwa kwenye Google Play wakati unatumia kivinjari cha kompyuta yako.
Visomaji pepe na vifaa vingine
Ili usome kwenye vifaa vya wino pepe kama vile visomaji vya vitabu pepe vya Kobo, utahitaji kupakua faili kisha ulihamishie kwenye kifaa chako. Fuatilia maagizo ya kina ya Kituo cha Usaidizi ili uhamishe faili kwenye visomaji vya vitabu pepe vinavyotumika.