Combinatorics and Complexity of Partition Functions

· Algorithms and Combinatorics Book 30 · Springer
Ebook
303
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

Partition functions arise in combinatorics and related problems of statistical physics as they encode in a succinct way the combinatorial structure of complicated systems. The main focus of the book is on efficient ways to compute (approximate) various partition functions, such as permanents, hafnians and their higher-dimensional versions, graph and hypergraph matching polynomials, the independence polynomial of a graph and partition functions enumerating 0-1 and integer points in polyhedra, which allows one to make algorithmic advances in otherwise intractable problems.

The book unifies various, often quite recent, results scattered in the literature, concentrating on the three main approaches: scaling, interpolation and correlation decay. The prerequisites include moderate amounts of real and complex analysis and linear algebra, making the book accessible to advanced math and physics undergraduates.

About the author

Alexander Barvinok is a professor of mathematics at the University of Michigan in Ann Arbor, interested in computational complexity and algorithms in algebra, geometry and combinatorics. The reader might be familiar with his books “A Course in Convexity” (AMS, 2002) and “Integer Points in Polyhedra” (EMS, 2008)

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.