Responsible and Explainable Artificial Intelligence in Healthcare: Ethics and Transparency at the Intersection

· ·
· Elsevier
Ebook
320
Pages
Eligible
Ratings and reviews aren’t verified  Learn More

About this ebook

Responsible and Explainable Artificial Intelligence in Healthcare: Ethics and Transparency at the Intersection provides clear guidance on building trustworthy Artificial Intelligence systems for healthcare. The book focuses on using Artificial Intelligence to improve diagnosis, prevent diseases, and personalize patient care. It addresses potential drawbacks, like reduced human interaction and ethical concerns, offering solutions for ethical and transparent Artificial Intelligence use in medicine. Across eight chapters, the book explores Artificial Intelligence's current status, its importance, and associated risks in healthcare. It explains designing reliable Artificial Intelligence for healthcare, tackling biases, and safeguarding patient privacy in the age of big data. The legal and regulatory landscape is also covered. One chapter is dedicated to showcasing real-world examples of responsible Artificial Intelligence in healthcare, highlighting best practices. The book concludes by summarizing key takeaways and discussing future challenges. "Responsible and Explainable Artificial Intelligence in Healthcare: Ethics and Transparency at the Intersection" is a valuable resource for healthcare professionals, policymakers, computer scientists, and ethicists concerned about Artificial Intelligence's ethical and societal impact on medicine. - Gives insights into the responsible and explainable use of Artificial Intelligence in healthcare and explore the challenges and opportunities for promoting ethical and transparent practices in this field - Offers the solution to strike a balance between patient privacy and data exchange - Provides concrete advice on how to create trustworthy, accountable, and transparent Artificial Intelligence systems - Explains the moral and social effects of Artificial intelligence in healthcare and suggests ways to encourage its ethical application

About the author

Prof. Akansha Singh, Professor at the School of Computer Science and Engineering, Bennett University, Greater Noida, boasts a comprehensive academic background with a B.Tech, M.Tech, and Ph.D. in Computer Science. Her doctoral studies, conducted at the prestigious IIT Roorkee, were focused on the cutting-edge fields of image processing and machine learning. A prolific author and scholar, Dr. Singh has contributed over 100 research papers and penned more than 25 books. Her editorial expertise is recognized by leading publishers such as Elsevier, Taylor and Francis, and Wiley, where she has edited books on a variety of emerging topics.Dr. Singh serves as the Associate Editor in IEEE Access, Discover Applied Science, PLOS One and guest editor in several journals. Her research interests are diverse and influential, spanning image processing, remote sensing, the Internet of Things (IoT), Blockchain and machine learning. Prof. Singh’s work in these areas not only advances the field of computer science but also significantly contributes to the broader scientific and technological community.

Dr. Krishna Kant Singh, currently the esteemed Director of Delhi Technical Campus in Greater Noida, India, is a highly experienced educator and researcher in the field of engineering and technology. He is a B.Tech and M.Tech degree, a Postgraduate Diploma in Machine Learning and Artificial Intelligence from IIIT Bangalore, a Master of Science in Machine Learning and Artificial Intelligence from Liverpool John Moores University, United Kingdom, and a Ph.D. from IIT Roorkee. Dr. Singh has made significant contributions to the academic and research community. With over 19 years of teaching experience, he has played a vital role in educating and mentoring future professionals. Dr. Singh also serves as an Associate Editor at IEEE Access, an Editorial Board Member at Applied Computing and Geosciences (Elsevier), and a Guest Editor for Complex and Intelligent Systems. His extensive publication record includes over 132 research papers. His areas of interest include Machine Learning, Deep Learning, computer vision and so on.

Dr. Ivan Izonin is an Associate Professor at the Department of Artificial Intelligence, Lviv Polytechnic National University, Ukraine. He holds a Ph.D. in computer science and has several years of experience in teaching, research, and development. Dr. Izonin's research interests include AI, healthcare, machine learning, and data mining. He has contributed to various international journals and conferences and has authored several research papers, including chapters in books. His work on text mining and natural language processing has been widely cited in the academic community. Dr. Izonin is well-respected in his field and has served as an Editor, Guest Editor, reviewer for several international journals and conferences

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.