Substrate Noise Coupling in RFICs

·
· Springer Science & Business Media
3.2
4 reviews
Ebook
119
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

Substrate noise coupling in integrated circuits (ICs) is the process by which int- ference signals in the form of voltage and current glitches cause parasitic currents to ?ow in the silicon substrate to various parts of the IC. The source of such glitches and parasitic currents could be from the switching noise of high speed digital clocks on the same chip. In RF and mixed signal ICs the switching noise is coupled to sensitive analog and RF nodes in the IC causing degradation in performance that could severely impact the yield. Thus, overcoming substrate coupling is a key issue in successful “system on chip” ?rst-pass integration where RF and mixed signal blocks, high speed digital I/O interface are integrated with digital signal proce- ing algorithms on the same chip. This is particularly true as we move to sub-90 nanometer system on chip integration. In this book a substrate aware design ?ow is built, calibrated to silicon and used as part of the design and validation ?ows to uncover and ?x substrate coupling problems in RF ICs. The ?ow is used to develop a comprehensive RF substrate noise isolation design guide to be used by RF designers during the ?oor planning, circuit design and validation phases. This will allow designers to optimize the - sign, maximize noise isolation and protect sensitive analog/RF blocks from being degraded by substrate noise coupling.

Ratings and reviews

3.2
4 reviews
stephen hemsworth
August 8, 2014
Xzibit zzzazz zzz
Did you find this helpful?

About the author

Mohammed Ismail is the Springer Series Advisor for the Analog Circuits and Signal Processing book series

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.