Advanced Linear Algebra

· Graduate Texts in Mathematics Книга 135 · Springer Science & Business Media
Е-книга
370
Страници
Оцените и рецензиите не се потврдени  Дознајте повеќе

За е-книгава

This book is a thorough introduction to linear algebra, for the graduate or advanced undergraduate student. Prerequisites are limited to a knowledge of the basic properties of matrices and determinants. However, since we cover the basics of vector spaces and linear transformations rather rapidly, a prior course in linear algebra (even at the sophomore level), along with a certain measure of "mathematical maturity," is highly desirable. Chapter 0 contains a summary of certain topics in modern algebra that are required for the sequel. This chapter should be skimmed quickly and then used primarily as a reference. Chapters 1-3 contain a discussion of the basic properties of vector spaces and linear transformations. Chapter 4 is devoted to a discussion of modules, emphasizing a comparison between the properties of modules and those of vector spaces. Chapter 5 provides more on modules. The main goals of this chapter are to prove that any two bases of a free module have the same cardinality and to introduce noetherian modules. However, the instructor may simply skim over this chapter, omitting all proofs. Chapter 6 is devoted to the theory of modules over a principal ideal domain, establishing the cyclic decomposition theorem for finitely generated modules. This theorem is the key to the structure theorems for finite dimensional linear operators, discussed in Chapters 7 and 8. Chapter 9 is devoted to real and complex inner product spaces.

Оценете ја е-книгава

Кажете ни што мислите.

Информации за читање

Паметни телефони и таблети
Инсталирајте ја апликацијата Google Play Books за Android и iPad/iPhone. Автоматски се синхронизира со сметката и ви овозможува да читате онлајн или офлајн каде и да сте.
Лаптопи и компјутери
Може да слушате аудиокниги купени од Google Play со користење на веб-прелистувачот на компјутерот.
Е-читачи и други уреди
За да читате на уреди со е-мастило, како што се е-читачите Kobo, ќе треба да преземете датотека и да ја префрлите на уредот. Следете ги деталните упатства во Центарот за помош за префрлање на датотеките на поддржани е-читачи.