Absolute Stability of Nonlinear Control Systems

· Mathematics and Its Applications Bog 5 · Springer Science & Business Media
5,0
1 anmeldelse
E-bog
178
Sider
Bedømmelser og anmeldelser verificeres ikke  Få flere oplysninger

Om denne e-bog

As is well-known, a control system always works under a variety of accidental or continued disturbances. Therefore, in designing and analysing the control system, stability is the first thing to be considered. Classic control theory was basically limited to a discussion of linear systems with constant coefficients. The fundamental tools for such studies were the Routh-Hurwitz algebraic criterion and the Nyquist geometric criterion. However, modern control theory mainly deals with nonlinear problems. The stability analysis of nonlinear control systems based on Liapunov stability theory can be traced back to the Russian school of stability. In 1944, the Russian mathematician Lurie, a specialist in control theory, discussed the stability of an autopilot. The well-known Lurie problem and the concept of absolute stability are presented, which is of universal significance both in theory and practice. Up until the end of the 1950's, the field of absolute stability was monopolized mainly by Russian scholars such as A. 1. Lurie, M. A. Aizeman, A. M. Letov and others. At the beginning of the 1960's, some famous American mathematicians such as J. P. LaSalle, S. Lefschetz and R. E. Kalman engaged themself in this field. Meanwhile, the Romanian scholar Popov presented a well-known frequency criterion and consequently ma de a decisive breakthrough in the study of absolute stability.

Bedømmelser og anmeldelser

5,0
1 anmeldelse

Bedøm denne e-bog

Fortæl os, hvad du mener.

Oplysninger om læsning

Smartphones og tablets
Installer appen Google Play Bøger til Android og iPad/iPhone. Den synkroniserer automatisk med din konto og giver dig mulighed for at læse online eller offline, uanset hvor du er.
Bærbare og stationære computere
Du kan høre lydbøger, du har købt i Google Play via browseren på din computer.
e-læsere og andre enheder
Hvis du vil læse på e-ink-enheder som f.eks. Kobo-e-læsere, skal du downloade en fil og overføre den til din enhed. Følg den detaljerede vejledning i Hjælp for at overføre filerne til understøttede e-læsere.