Abelian Varieties

· Springer Science & Business Media
3,5
2 reviews
eBook
256
Pages
Ratings and reviews aren’t verified  Learn more

About this eBook

It is with considerable pleasure that we have seen in recent years the simplifications expected by Weil realize themselves, and it has seemed timely to incorporate them into a new book. We treat exclusively abelian varieties, and have summarized in a first chapter all the general results on algebraic groups that are used in the sequel. We then deal with the Jacobian variety of a curve, the Albanese variety of an arbitrary variety, and its Picard variety, i.e., the theory of cycles of dimension 0 and co dimension 1. The numerical theory which gives the number of points of finite order on an abelian variety, and the properties of the trace of an endomorphism are simple formal consequences of the theory of the Picard variety and of numerical equivalence. The same thing holds for the Lefschetz fixed point formula for a curve, and hence for the Riemann hypothesis for curves. Roughly speaking, it can be said that the theory of the Albanese and Picard variety incorporates in purely algebraic terms the theory which in the classical case would be that of the first homology group.

Ratings and reviews

3,5
2 reviews

Rate this eBook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Centre instructions to transfer the files to supported eReaders.