A Singular Introduction to Commutative Algebra

· Springer Science & Business Media
E-Book
588
Seiten
Bewertungen und Rezensionen werden nicht geprüft  Weitere Informationen

Über dieses E-Book

In theory there is no difference between theory and practice. In practice there is. Yogi Berra A SINGULAR Introduction to Commutative Algebra offers a rigorous intro duction to commutative algebra and, at the same time, provides algorithms and computational practice. In this book, we do not separate the theoretical and the computational part. Coincidentally, as new concepts are introduced, it is consequently shown, by means of concrete examples and general proce dures, how these concepts are handled by a computer. We believe that this combination of theory and practice will provide not only a fast way to enter a rather abstract field but also a better understanding of the theory, showing concurrently how the theory can be applied. We exemplify the computational part by using the computer algebra sys tem SINGULAR, a system for polynomial computations, which was developed in order to support mathematical research in commutative algebra, algebraic geometry and singularity theory. As the restriction to a specific system is necessary for such an exposition, the book should be useful also for users of other systems (such as Macaulay2 and CoCoA) with similar goals. Indeed, once the algorithms and the method of their application in one system is known, it is usually not difficult to transfer them to another system.

Dieses E-Book bewerten

Deine Meinung ist gefragt!

Informationen zum Lesen

Smartphones und Tablets
Nachdem du die Google Play Bücher App für Android und iPad/iPhone installiert hast, wird diese automatisch mit deinem Konto synchronisiert, sodass du auch unterwegs online und offline lesen kannst.
Laptops und Computer
Im Webbrowser auf deinem Computer kannst du dir Hörbucher anhören, die du bei Google Play gekauft hast.
E-Reader und andere Geräte
Wenn du Bücher auf E-Ink-Geräten lesen möchtest, beispielsweise auf einem Kobo eReader, lade eine Datei herunter und übertrage sie auf dein Gerät. Eine ausführliche Anleitung zum Übertragen der Dateien auf unterstützte E-Reader findest du in der Hilfe.