Lernen geometrischer Merkmale: Visuelle Einblicke durch das Lernen geometrischer Merkmale erschließen

One Billion Knowledgeable · Озвучення за допомогою ШІ: Gabriel (від Google)
Аудіокнига
3 год 19 хв
Повна
Можна додати
Озвучено за допомогою ШІ
Google не перевіряє оцінки й відгуки. Докладніше.
Хочете отримати зразок на 19 хв? Слухайте будь-коли, навіть не в мережі. 
Додати

Про цю аудіокнигу

Was ist das Lernen geometrischer Merkmale


Das Lernen geometrischer Merkmale ist eine Technik, die maschinelles Lernen und Computer Vision kombiniert, um visuelle Aufgaben zu lösen. Das Hauptziel dieser Methode besteht darin, eine Reihe repräsentativer Merkmale einer geometrischen Form zur Darstellung eines Objekts zu finden, indem geometrische Merkmale aus Bildern gesammelt und mithilfe effizienter Methoden des maschinellen Lernens erlernt werden. Menschen lösen visuelle Aufgaben und können schnell auf die Umgebung reagieren, indem sie Wahrnehmungsinformationen aus dem, was sie sehen, extrahieren. Forscher simulieren die Fähigkeit des Menschen, Objekte zu erkennen, um Computer-Vision-Probleme zu lösen. Beispielsweise wandten M. Mata et al. (2002) Feature-Learning-Techniken auf die Navigationsaufgaben mobiler Roboter an, um Hindernissen auszuweichen. Sie nutzten genetische Algorithmen zum Erlernen von Merkmalen und zum Erkennen von Objekten (Figuren). Lernmethoden für geometrische Merkmale können nicht nur Erkennungsprobleme lösen, sondern auch nachfolgende Aktionen vorhersagen, indem sie einen Satz aufeinanderfolgender eingegebener sensorischer Bilder analysieren, in der Regel einige extrahierende Merkmale von Bildern. Durch Lernen werden einige Hypothesen über die nächste Aktion aufgestellt und entsprechend der Wahrscheinlichkeit jeder Hypothese die wahrscheinlichste Aktion ermittelt. Diese Technik wird häufig im Bereich der künstlichen Intelligenz eingesetzt.


Wie Sie davon profitieren


(I) Einblicke und Validierungen zu den folgenden Themen:


Kapitel 1: Lernen geometrischer Merkmale


Kapitel 2: Mustererkennung


Kapitel 3: Hough-Transformation


Kapitel 4: Verlustfunktion


Kapitel 5: Expectation?Maximization-Algorithmus


Kapitel 6: Ablehnungsabtastung


Kapitel 7: Array-Verarbeitung


Kapitel 8: Autoencoder


Kapitel 9: Stochastische Approximation


Kapitel 10: Schachbretterkennung


(II) Beantwortung der häufigsten öffentlichen Fragen zum Lernen geometrischer Merkmale.


(III ) Beispiele aus der Praxis für den Einsatz des Lernens geometrischer Merkmale in vielen Bereichen.


An wen sich dieses Buch richtet


Profis, Studenten und Doktoranden, Enthusiasten, Hobbyisten und diejenigen, die über das Grundwissen oder die Informationen zum Erlernen geometrischer Merkmale hinausgehen möchten.

Оцініть цю аудіокнигу

Повідомте нас про свої враження.

Інформація щодо прослуховування

Смартфони та планшети
Установіть додаток Google Play Книги для Android і iPad або iPhone. Він автоматично синхронізується з вашим обліковим записом і дає змогу читати книги в режимах онлайн і офлайн, де б ви не були.
Портативні та настільні комп’ютери
Придбані в Google Play книги можна читати за допомогою веб-переглядача вашого комп’ютера.

Ще від автора Fouad Sabry

Схожі аудіокниги

Озвучення: Gabriel