Lernen geometrischer Merkmale: Visuelle Einblicke durch das Lernen geometrischer Merkmale erschließen

One Billion Knowledgeable · Dikisahkan AI oleh Gabriel (daripada Google)
Buku Audio
3 jam 19 min
Lengkap
Layak
Dikisahkan oleh AI
Rating dan ulasan tidak disahkan  Ketahui Lebih Lanjut
Mahukan sampel 19 min? Dengar pada bila-bila masa, walaupun di luar talian. 
Tambah

Perihal buku audio ini

Was ist das Lernen geometrischer Merkmale


Das Lernen geometrischer Merkmale ist eine Technik, die maschinelles Lernen und Computer Vision kombiniert, um visuelle Aufgaben zu lösen. Das Hauptziel dieser Methode besteht darin, eine Reihe repräsentativer Merkmale einer geometrischen Form zur Darstellung eines Objekts zu finden, indem geometrische Merkmale aus Bildern gesammelt und mithilfe effizienter Methoden des maschinellen Lernens erlernt werden. Menschen lösen visuelle Aufgaben und können schnell auf die Umgebung reagieren, indem sie Wahrnehmungsinformationen aus dem, was sie sehen, extrahieren. Forscher simulieren die Fähigkeit des Menschen, Objekte zu erkennen, um Computer-Vision-Probleme zu lösen. Beispielsweise wandten M. Mata et al. (2002) Feature-Learning-Techniken auf die Navigationsaufgaben mobiler Roboter an, um Hindernissen auszuweichen. Sie nutzten genetische Algorithmen zum Erlernen von Merkmalen und zum Erkennen von Objekten (Figuren). Lernmethoden für geometrische Merkmale können nicht nur Erkennungsprobleme lösen, sondern auch nachfolgende Aktionen vorhersagen, indem sie einen Satz aufeinanderfolgender eingegebener sensorischer Bilder analysieren, in der Regel einige extrahierende Merkmale von Bildern. Durch Lernen werden einige Hypothesen über die nächste Aktion aufgestellt und entsprechend der Wahrscheinlichkeit jeder Hypothese die wahrscheinlichste Aktion ermittelt. Diese Technik wird häufig im Bereich der künstlichen Intelligenz eingesetzt.


Wie Sie davon profitieren


(I) Einblicke und Validierungen zu den folgenden Themen:


Kapitel 1: Lernen geometrischer Merkmale


Kapitel 2: Mustererkennung


Kapitel 3: Hough-Transformation


Kapitel 4: Verlustfunktion


Kapitel 5: Expectation?Maximization-Algorithmus


Kapitel 6: Ablehnungsabtastung


Kapitel 7: Array-Verarbeitung


Kapitel 8: Autoencoder


Kapitel 9: Stochastische Approximation


Kapitel 10: Schachbretterkennung


(II) Beantwortung der häufigsten öffentlichen Fragen zum Lernen geometrischer Merkmale.


(III ) Beispiele aus der Praxis für den Einsatz des Lernens geometrischer Merkmale in vielen Bereichen.


An wen sich dieses Buch richtet


Profis, Studenten und Doktoranden, Enthusiasten, Hobbyisten und diejenigen, die über das Grundwissen oder die Informationen zum Erlernen geometrischer Merkmale hinausgehen möchten.

Nilaikan buku audio ini

Beritahu kami pendapat anda.

Maklumat tentang mendengar

Telefon pintar dan tablet
Pasang apl Google Play Books untuk Android dan iPad/iPhone. Apl ini menyegerak secara automatik dengan akaun anda dan membenarkan anda membaca di dalam atau luar talian, walau di mana jua anda berada.
Komputer riba dan komputer
Anda boleh membaca buku yang dibeli di Google Play menggunakan penyemak imbas komputer anda.

Lagi oleh Fouad Sabry

Buku audio yang serupa

Dikisahkan oleh Gabriel