Bayesian Inference: Fundamentals and Applications

· One Billion Knowledgeable · Narration par l'IA (Mason de Google)
Livre audio
2 h 55 min
Version intégrale
Éligible
Narration par l'IA
Les notes et avis ne sont pas vérifiés. En savoir plus
Envie d'un extrait de 17 min ? Écoutez-le à tout moment, même hors connexion. 
Ajouter

À propos de ce livre audio

What Is Bayesian Inference


Bayesian inference is a type of statistical inference that updates the probability of a hypothesis based on new data or information using Bayes' theorem. This way of statistical inference is known as the Bayesian method. In the field of statistics, and particularly in the field of mathematical statistics, the Bayesian inference method is an essential tool. When conducting a dynamic analysis of a data sequence, bayesian updating is an especially useful technique to utilize. Inference based on Bayes' theorem has been successfully implemented in a diverse range of fields, including those of science, engineering, philosophy, medicine, athletics, and the legal system. Bayesian inference is strongly related to subjective probability, which is why it is frequently referred to as "Bayesian probability" in the field of decision theory philosophy.


How You Will Benefit


(I) Insights, and validations about the following topics:


Chapter 1: Bayesian Inference


Chapter 2: Likelihood Function


Chapter 3: Conjugate Prior


Chapter 4: Posterior Probability


Chapter 5: Maximum a Posteriori Estimation


Chapter 6: Bayes Estimator


Chapter 7: Bayesian Linear Regression


Chapter 8: Dirichlet Distribution


Chapter 9: Variational Bayesian Methods


Chapter 10: Bayesian Hierarchical Modeling


(II) Answering the public top questions about bayesian inference.


(III) Real world examples for the usage of bayesian inference in many fields.


(IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of bayesian inference' technologies.


Who This Book Is For


Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of bayesian inference.

À propos de l'auteur

Fouad Sabry is the former Regional Head of Business Development for Applications at HP in Southern Europe, Middle East, and Africa (SEMEA). Fouad has received his B.Sc. of Computer Systems and Automatic Control in 1996, dual master’s degrees from University of Melbourne (UoM) in Australia, Master of Business Administration (MBA) in 2008, and Master of Management in Information Technology (MMIT) in 2010. 

Fouad has more than 20 years of experience in Information Technology and Telecommunications fields, working in local, regional, and international companies, such as Vodafone and IBM in Middle East and Africa (MEA) region. Fouad joined HP Middle East (ME), based in Dubai, United Arab Emirates (UAE) in 2013 and helped develop the software business in tens of markets across Southern Europe, Middle East, and Africa (SEMEA) regions. Currently, Fouad is an entrepreneur, author, futurist, focused on Emerging Technologies, and Industry Solutions, and founder of One Billion Knowledgeable (1BK) Initiative.

Notez ce livre audio

Dites-nous ce que vous en pensez.

Informations relatives à l'écoute

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez utiliser le navigateur Web de votre ordinateur pour lire des livres achetés sur Google Play.

Autres livres par Fouad Sabry

Livres audio similaires

Lu par Mason