Bayesian Inference: Fundamentals and Applications

· One Billion Knowledgeable · القراءة بصوت "Mason" استنادًا إلى الذكاء الاصطناعي (من Google)
كتاب مسموع
2 ساعة 55 دقيقة
غير مختصر
مؤهل
سرد باستخدام الذكاء الاصطناعي
لم يتم التحقّق من التقييمات والمراجعات.  مزيد من المعلومات
هل تريد إضافة نموذج مدته 17 دقيقة؟ يمكنك الاستماع إلى هذا النموذج في أي وقت وبلا اتصال بالإنترنت. 
إضافة

معلومات عن هذا الكتاب المسموع

What Is Bayesian Inference


Bayesian inference is a type of statistical inference that updates the probability of a hypothesis based on new data or information using Bayes' theorem. This way of statistical inference is known as the Bayesian method. In the field of statistics, and particularly in the field of mathematical statistics, the Bayesian inference method is an essential tool. When conducting a dynamic analysis of a data sequence, bayesian updating is an especially useful technique to utilize. Inference based on Bayes' theorem has been successfully implemented in a diverse range of fields, including those of science, engineering, philosophy, medicine, athletics, and the legal system. Bayesian inference is strongly related to subjective probability, which is why it is frequently referred to as "Bayesian probability" in the field of decision theory philosophy.


How You Will Benefit


(I) Insights, and validations about the following topics:


Chapter 1: Bayesian Inference


Chapter 2: Likelihood Function


Chapter 3: Conjugate Prior


Chapter 4: Posterior Probability


Chapter 5: Maximum a Posteriori Estimation


Chapter 6: Bayes Estimator


Chapter 7: Bayesian Linear Regression


Chapter 8: Dirichlet Distribution


Chapter 9: Variational Bayesian Methods


Chapter 10: Bayesian Hierarchical Modeling


(II) Answering the public top questions about bayesian inference.


(III) Real world examples for the usage of bayesian inference in many fields.


(IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of bayesian inference' technologies.


Who This Book Is For


Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of bayesian inference.

نبذة عن المؤلف

Fouad Sabry is the former Regional Head of Business Development for Applications at HP in Southern Europe, Middle East, and Africa (SEMEA). Fouad has received his B.Sc. of Computer Systems and Automatic Control in 1996, dual master’s degrees from University of Melbourne (UoM) in Australia, Master of Business Administration (MBA) in 2008, and Master of Management in Information Technology (MMIT) in 2010. 

Fouad has more than 20 years of experience in Information Technology and Telecommunications fields, working in local, regional, and international companies, such as Vodafone and IBM in Middle East and Africa (MEA) region. Fouad joined HP Middle East (ME), based in Dubai, United Arab Emirates (UAE) in 2013 and helped develop the software business in tens of markets across Southern Europe, Middle East, and Africa (SEMEA) regions. Currently, Fouad is an entrepreneur, author, futurist, focused on Emerging Technologies, and Industry Solutions, and founder of One Billion Knowledgeable (1BK) Initiative.

تقييم هذا الكتاب المسموع

أخبرنا ما هو رأيك.

معلومات عن كيفية الاستماع

الهواتف الذكية والأجهزة اللوحية
ينبغي تثبيت تطبيق كتب Google Play لنظام التشغيل Android وiPad/iPhone. يعمل هذا التطبيق على إجراء مزامنة تلقائية مع حسابك ويتيح لك القراءة أثناء الاتصال بالإنترنت أو بلا اتصال بالإنترنت أينما كنت.
أجهزة الكمبيوتر المحمول وأجهزة الكمبيوتر
يمكنك قراءة الكتب التي تم شراؤها من Google Play باستخدام متصفح الويب على جهاز الكمبيوتر.

كتب من تأليف Fouad Sabry

الكتب المسموعة المماثلة

بصوت Mason